Answer:
a.18.5 m/s
b.1.98 s
Explanation:
We are given that
[tex]\theta=35^{\circ}[/tex]
a.Let [tex]v_0[/tex] be the initial velocity of the ball.
Distance,x=30 m
Height,h=1.8 m
[tex]v_x=v_0cos\theta=v_0cos35[/tex]
[tex]v_y=v_0sin\theta=v_0sin35[/tex]
[tex]x=v_0cos\theta\times t=v_0cos35\times t[/tex]
[tex]t=\frac{30}{v_0cos35}[/tex]
[tex]h=v_yt-\frac{1}{2}gt^2[/tex]
Substitute the values
[tex]1.8=v_0sin35\frac{30}{v_0cos35}-\frac{1}{2}(9.8)(\frac{30}{v_0cso35})^2[/tex]
[tex]1.8=30tan35-\frac{6574.6}{v^2_0}[/tex]
[tex]\frac{6574.6}{v^2_0}=21-1.8=19.2[/tex]
[tex]v^2_0=\frac{6574.6}{19.2}[/tex]
[tex]v_0=\sqrt{\frac{6574.6}{19.2}}=18.5 m/s[/tex]
Initial velocity of the ball=18.5 m/s
b.Substitute the value then we get
[tex]t=\frac{30}{18.5cos35}[/tex]
t=1.98 s
Hence, the time for the ball to reach the target=1.98 s