Respuesta :
Answer:
[tex](5\pi-11.6)ft^2[/tex]
Step-by-step explanation:
Given:
Length of radius of circle = 5 feets
Length of perpendicular bisector = 4 feets
To find:
Area of the shaded portion of the circle
Solution:
As OD is perpendicular bisector of AB,
[tex]AB=2AD=2(2.9)=5.8\,\,feets[/tex]
[tex]\angle ODA=90^{\circ}[/tex]
Area of [tex]\Delta AOB[/tex] = 1/2 (base) × (height) = [tex]\frac{1}{2}\times 4\times 5.8=11.6[/tex] square feets
Area of sector AOBC = [tex]\frac{\angle AOB}{360^{\circ}}\pi(r^2)=\frac{72^{\circ}}{360^{\circ}}\pi(5^2)=5\pi[/tex] square feets
Here, r denotes radius of circle
So,
Area of shaded portion = Area of sector AOBC - Area of [tex]\Delta AOB[/tex] = [tex](5\pi-11.6)ft^2[/tex]