Answer:
Explanation:
Given That:
radius of spherical core r₁ = 4cm
radius of tubular r₂ = 0.5cm
length of tubular l = 8cm
Volume of spherical V₁
[tex]=\frac{4}{3} \pi r_1^3[/tex]
[tex]=\frac{4}{3} \pi(4)^3\\\\=\frac{4}{3} \pi 64\\\\=268.1cm^3[/tex]
Volume of tabular V₂
[tex]=\pi r ^2_2h[/tex]
[tex]=\pi(0.5)^2\times 8\\\\ =\pi 90.250\times8\\\\ =\pi 2\\\\=6.283cm^3[/tex]
F ∝ V
[tex]F_1 \propto V_1[/tex] and [tex]F_2 \propto V_2[/tex]
As V₁ is greater than V₂
⇒ F₁ is greater than F₂
F is force
V is volume
This is the required answer