Answer:
[tex]P(28<X<31.5)=P(\frac{28-\mu}{\sigma}<\frac{X-\mu}{\sigma}<\frac{31.5-\mu}{\sigma})=P(\frac{28-30}{2}<Z<\frac{31.5-30}{2})=P(-1<z<0.75)[/tex]
We can find this probability with this difference
[tex]P(-1<z<0.75)=P(z<0.75)-P(z<-1)[/tex]
If we use the normal standard distribution or excel we got:
[tex]P(-1<z<0.75)=P(z<0.75)-P(z<-1)=0.773-0.159=0.614[/tex]
Step-by-step explanation:
Let X the random variable that represent the weights for a can of pumpkin pie, and for this case we know the distribution for X is given by:
[tex]X \sim N(30,2)[/tex]
Where [tex]\mu=30[/tex] and [tex]\sigma=2[/tex]
We are interested on this probability
[tex]P(28<X<31.5)[/tex]
We can use the z score formula given by:
[tex]z=\frac{x-\mu}{\sigma}[/tex]
Using this formula we got:
[tex]P(28<X<31.5)=P(\frac{28-\mu}{\sigma}<\frac{X-\mu}{\sigma}<\frac{31.5-\mu}{\sigma})=P(\frac{28-30}{2}<Z<\frac{31.5-30}{2})=P(-1<z<0.75)[/tex]
We can find this probability with this difference
[tex]P(-1<z<0.75)=P(z<0.75)-P(z<-1)[/tex]
If we use the normal standard distribution or excel we got:
[tex]P(-1<z<0.75)=P(z<0.75)-P(z<-1)=0.773-0.159=0.614[/tex]