Respuesta :
Answer:
Mobility of the minority carriers, [tex]\mu_{n} =1184.21 cm^{2} /V-sec[/tex]
Diffusion coefficient for minority carriers,[tex]D_{n} = 29.20 cm^2 /s[/tex]
Verified from Einstein relation as [tex]\frac{D_{n} }{\mu_{n} } = 25 mV[/tex]
Explanation:
Length of sample, [tex]l_{s} = 2 cm[/tex]
Separation between the two probes, L = 1.8 cm
Drift time, [tex]t_{d} = 0.608 ms[/tex]
Applied voltage, V = 5 V
Mobility of the minority carriers ( electrons), [tex]\mu_{n} = \frac{V_{d} }{E}[/tex]
Where the drift velocity, [tex]V_{d} = \frac{L}{t_{d} }[/tex]
[tex]V_{d} = \frac{1.8}{0.608 * 10^{-3} } \\V_{d} = 2960.53 cm/s[/tex]
and the Electric field strength, [tex]E = \frac{V}{l_{s} }[/tex]
E = 5/2
E = 2.5 V/cm
Mobility of the minority carriers:
[tex]\mu_{n} = 2960.53/2.5\\\mu_{n} =1184.21 cm^{2} /V-sec[/tex]
The electron diffusion coefficient, [tex]D_{n} = \frac{(\triangle x)^{2} }{16 t_{d} }[/tex]
[tex]\triangle x = (\triangle t )V_{d}[/tex], where Δt = separation of pulse seen in an oscilloscope in time( it should be in micro second range)
[tex]\triangle x = \frac{(\triangle t) L}{t_{d} } \\\triangle x = \frac{180*10^{-6} * 1.8}{0.608*10^{-3} }\\\triangle x =0.533 cm[/tex]
[tex]D_{n} = \frac{0.533^{2} }{16 * 0.608 * 10^{-3} }\\D_{n} = 29.20 cm^2 /s[/tex]
For the Einstein equation to be satisfied, [tex]\frac{D_{n} }{\mu_{n} } = \frac{KT}{q} = 0.025 V[/tex]
[tex]\frac{D_{n} }{\mu_{n} } = \frac{29.20}{1184.21} \\\frac{D_{n} }{\mu_{n} } = 0.025 = 25 mV[/tex]
Verified.