Answer:
t=16.2 years
Step-by-step explanation:
A=p(1+r/n)^nt
A=$20100
P=$6500
r=7%=0.07
n=4
t=?
t=ln(A/P)/n {ln(1+r/n)}
=ln(20100/6500) / 4{ln(1+0.07/4)}
=ln(3.0923)/4{ln(1+0.0175)}
=ln(3.0923)/4{ln(1.0175)}
=1.1289/4(0.0174)
=1.1289/0.0696
=16.23
To the nearest tenth
t=16.2 years