Answer: [tex]p_{B} - p_{A}[/tex] = 28800 Pa or 28.8 kPa
Explanation: To determine the pressure of a liquid in a rotating tank,it is used:
p = [tex]\frac{p_{fluid}.w^{2}.r^{2} }{2}[/tex] - γfluid . z + c
where:
[tex]p_{fluid}[/tex] is the liquid's density
w is the angular velocity
r is the radius
γfluid.z is the pressure variation due to centrifugal force.
For this question, the difference between a point on the circumference and a point on the axis will be:
[tex]p_{B} - p_{A}[/tex] = [tex]\frac{p_{fluid}.w^{2}.r_{B} ^{2} }{2}[/tex] - γfluid.[tex]z_{B}[/tex] - ([tex]\frac{p_{fluid}.w^{2}.r_{A} ^{2} }{2}[/tex] - γfluid.[tex]z_{A}[/tex])
[tex]p_{B} - p_{A}[/tex] = [tex]\frac{p_{fluid}.w^{2}}{2} (r_B^{2} - r_A^{2} )[/tex] - γfluid([tex]z_{B}[/tex] -[tex]z_{A}[/tex])
Since there is no variation in the z-axis, z = 0 and that the density of oil is 0.9.10³kg/m³:
[tex]p_{B} - p_{A}[/tex] = [tex]\frac{p_{fluid}.w^{2}}{2} (r_B^{2} - r_A^{2} )[/tex]
[tex]p_{B} - p_{A} = \frac{0.9.10^3.40^2}{2}(0.2^2 - 0)[/tex]
[tex]p_{B} - p_{A}[/tex] = 28800
The difference in pressure between two points, one on the circumference and the other on the axis is [tex]p_{B} - p_{A}[/tex] = 28800 Pa or 28.8 kPa