Respuesta :
Answer:
2064 Square Units
Step-by-step explanation:
First, we determine the height of the Isosceles Trapezoid
From the first diagram. the right triangle formed has a base length of 7 units and hypotenuse of 25 units.
Using Pythagoras Theorem
[tex]25^2=7^2+h^2\\h^2=25^2-7^2\\h^2=576\\h^2=24^2\\h=24$ units[/tex]
Height of the Trapezoid =24 units
Area of a trapezoid [tex]=\frac{1}{2}(a+b)h[/tex]
[tex]=\frac{1}{2}(16+30)*24\\=552$ square units[/tex]
Therefore:
Base Area of the Prism =552 square units
Volume of a Prism =Base Area X Length
5520 =552 X Length
Length of the Prism =10 Units
Therefore:
Surface Area of the Prism = 2(Area of Isosceles trapezoid)+Area of 4 Rectangles
From the second diagram. the rectangles formed are of dimensions:
- 30 by 10
- 10 by 25
- 10 by 25; and
- 16 by 10
Surface Area of the Prism = 2(552)+(30X10)+(10X25)+(10X25)+(10X16)
=1104+300+250+250+160
=2064 Square Units
![Ver imagen Newton9022](https://us-static.z-dn.net/files/d09/4170441d0f5e69c39db5dc2b75c809da.png)
![Ver imagen Newton9022](https://us-static.z-dn.net/files/d03/36b0b1dd8eb8b30dc4f5805f19e65f96.png)