Answer:
The differential equation which describes the mixing process is [tex]\frac{dc_{salt,out}}{dt} + \frac{2}{125}\cdot c_{salt,out} = \frac{71}{100000}[/tex].
Step-by-step explanation:
The mixing process within the tank is modelled after the Principle of Mass Conservation, which states that:
[tex]\dot m_{salt,in} - \dot m_{salt,out} = \frac{dm_{tank}}{dt}[/tex]
Physically speaking, mass flow of salt is equal to the product of volume flow of water and salt concentration. Then:
[tex]\dot V_{water, in, 1}\cdot c_{salt, in,1} + \dot V_{water, in, 2} \cdot c_{salt,in, 2} - \dot V_{water, out}\cdot c_{salt, out} = V_{tank}\cdot \frac{dc_{salt,out}}{dt}[/tex]
Given that [tex]\dot V_{water, in, 1} = 9\,\frac{L}{min}[/tex], [tex]\dot V_{water, in, 2} = 7\,\frac{L}{min}[/tex], [tex]c_{salt,in,1} = 0.04\,\frac{kg}{L}[/tex], [tex]c_{salt, in, 2} = 0.05\,\frac{kg}{L}[/tex], [tex]\dot V_{water, out} = 16\,\frac{L}{min}[/tex] and [tex]V_{tank} = 1000\,L[/tex], the differential equation that describes the system is:
[tex]0.71 - 16\cdot c_{salt,out} = 1000\cdot \frac{dc_{salt,out}}{dt}[/tex]
[tex]1000\cdot \frac{dc_{salt, out}}{dt} + 16\cdot c_{salt, out} = 0.71[/tex]
[tex]\frac{dc_{salt,out}}{dt} + \frac{2}{125}\cdot c_{salt,out} = \frac{71}{100000}[/tex]