An ideal Otto cycle has a compression ratio of 9.2 and uses air as the working fluid. At the beginning of the compression process, air is at 98 kPa and 27°C. The pressure is doubled during the constant-volume heat-addition process. Accounting for the variation of specific heats with temperature, determine (a) the amount of heat transferred to the air (qout), (b) the net work output, (c) the thermal efficiency, and (d) the mean effective pressure for the cycle.

Respuesta :

Answer:

(a) The amount of heat transferred to the air, [tex]q_{out}[/tex] is 215.5077 kJ/kg

(b) The net work output, [tex]W_{net}[/tex], is 308.07 kJ/kg

(c) The thermal efficiency is 58.8%

(d) The Mean Effective Pressure, MEP, is 393.209 kPa

Explanation:

(a) The assumptions made are;

[tex]c_p[/tex] = 1.005 kJ/(kg·K), [tex]c_v[/tex] = 0.718 kJ/(kg·K), R = 0.287 kJ/(kg·K),

Process 1 to 2 is isentropic compression, therefore;

[tex]T_{2}= T_{1}\left (\dfrac{v_{1}}{v_{2}} \right )^{k-1} = 300.15\times 9.2^{0.4} = 729.21 \, K[/tex]

From;

[tex]\dfrac{p_{1}\times v_{1}}{T_{1}} = \dfrac{p_{2}\times v_{2}}{T_{2} }[/tex]

We have;

[tex]p_{2} = \dfrac{p_{1}\times v_{1}\times T_{2}}{T_{1} \times v_{2}} = \dfrac{98\times 9.2\times 729.21}{300.15 } = 2190.43 \, kPa[/tex]

Process 2 to 3 is reversible constant volume heating, therefore;

[tex]\dfrac{p_3}{T_3} =\dfrac{p_2}{T_2}[/tex]

p₃ = 2 × p₂ = 2 × 2190.43 = 4380.86 kPa

[tex]T_3 = \dfrac{p_3 \times T_2}{p_2} =\dfrac{4380.86 \times 729.21}{2190.43} = 1458.42 \, K[/tex]

Process 3 to 4 is isentropic expansion, therefore;

[tex]T_{3}= T_{4}\left (\dfrac{v_{4}}{v_{3}} \right )^{k-1}[/tex]

[tex]1458.42= T_{4} \times \left (9.2 \right )^{0.4}[/tex]

[tex]T_4 = \dfrac{1458.42}{(9.2)^{0.4}} = 600.3 \, K[/tex]

[tex]q_{out} = m \times c_v \times (T_4 - T_1) = 0.718 \times (600.3 - 300.15) = 215.5077 \, kJ/kg[/tex]

The amount of heat transferred to the air, [tex]q_{out}[/tex] = 215.5077 kJ/kg

(b) The net work output, [tex]W_{net}[/tex], is found as follows;

[tex]W_{net} = q_{in} - q_{out}[/tex]

[tex]q_{in} = m \times c_v \times (T_3 - T_2) = 0.718 \times (1458.42 - 729.21) = 523.574 \, kJ/kg[/tex]

[tex]\therefore W_{net} = 523.574 - 215.5077 = 308.07 \, kJ/kg[/tex]

(c) The thermal efficiency is given by the relation;

[tex]\eta_{th} = \dfrac{W_{net}}{q_{in}} \times 100= \dfrac{308.07}{523.574} \times 100= 58.8\%[/tex]

(d) From the general gas equation, we have;

[tex]V_{1} = \dfrac{m\times R\times T_{1}}{p_{1}} = \dfrac{1\times 0.287\times 300.15}{98} =0.897\, m^{3}/kg[/tex]

The Mean Effective Pressure, MEP, is given as follows;

[tex]MEP =\dfrac{W_{net}}{V_1 - V_2} = \dfrac{W_{net}}{V_1 \times (1- 1/r)}= \dfrac{308.07}{0.897\times (1- 1/9.2)} = 393.209 \, kPa[/tex]

The Mean Effective Pressure, MEP = 393.209 kPa.

ACCESS MORE