Respuesta :
Answer:
(a) The amount of heat transferred to the air, [tex]q_{out}[/tex] is 215.5077 kJ/kg
(b) The net work output, [tex]W_{net}[/tex], is 308.07 kJ/kg
(c) The thermal efficiency is 58.8%
(d) The Mean Effective Pressure, MEP, is 393.209 kPa
Explanation:
(a) The assumptions made are;
[tex]c_p[/tex] = 1.005 kJ/(kg·K), [tex]c_v[/tex] = 0.718 kJ/(kg·K), R = 0.287 kJ/(kg·K),
Process 1 to 2 is isentropic compression, therefore;
[tex]T_{2}= T_{1}\left (\dfrac{v_{1}}{v_{2}} \right )^{k-1} = 300.15\times 9.2^{0.4} = 729.21 \, K[/tex]
From;
[tex]\dfrac{p_{1}\times v_{1}}{T_{1}} = \dfrac{p_{2}\times v_{2}}{T_{2} }[/tex]
We have;
[tex]p_{2} = \dfrac{p_{1}\times v_{1}\times T_{2}}{T_{1} \times v_{2}} = \dfrac{98\times 9.2\times 729.21}{300.15 } = 2190.43 \, kPa[/tex]
Process 2 to 3 is reversible constant volume heating, therefore;
[tex]\dfrac{p_3}{T_3} =\dfrac{p_2}{T_2}[/tex]
p₃ = 2 × p₂ = 2 × 2190.43 = 4380.86 kPa
[tex]T_3 = \dfrac{p_3 \times T_2}{p_2} =\dfrac{4380.86 \times 729.21}{2190.43} = 1458.42 \, K[/tex]
Process 3 to 4 is isentropic expansion, therefore;
[tex]T_{3}= T_{4}\left (\dfrac{v_{4}}{v_{3}} \right )^{k-1}[/tex]
[tex]1458.42= T_{4} \times \left (9.2 \right )^{0.4}[/tex]
[tex]T_4 = \dfrac{1458.42}{(9.2)^{0.4}} = 600.3 \, K[/tex]
[tex]q_{out} = m \times c_v \times (T_4 - T_1) = 0.718 \times (600.3 - 300.15) = 215.5077 \, kJ/kg[/tex]
The amount of heat transferred to the air, [tex]q_{out}[/tex] = 215.5077 kJ/kg
(b) The net work output, [tex]W_{net}[/tex], is found as follows;
[tex]W_{net} = q_{in} - q_{out}[/tex]
[tex]q_{in} = m \times c_v \times (T_3 - T_2) = 0.718 \times (1458.42 - 729.21) = 523.574 \, kJ/kg[/tex]
[tex]\therefore W_{net} = 523.574 - 215.5077 = 308.07 \, kJ/kg[/tex]
(c) The thermal efficiency is given by the relation;
[tex]\eta_{th} = \dfrac{W_{net}}{q_{in}} \times 100= \dfrac{308.07}{523.574} \times 100= 58.8\%[/tex]
(d) From the general gas equation, we have;
[tex]V_{1} = \dfrac{m\times R\times T_{1}}{p_{1}} = \dfrac{1\times 0.287\times 300.15}{98} =0.897\, m^{3}/kg[/tex]
The Mean Effective Pressure, MEP, is given as follows;
[tex]MEP =\dfrac{W_{net}}{V_1 - V_2} = \dfrac{W_{net}}{V_1 \times (1- 1/r)}= \dfrac{308.07}{0.897\times (1- 1/9.2)} = 393.209 \, kPa[/tex]
The Mean Effective Pressure, MEP = 393.209 kPa.