Respuesta :
Answer:
[tex]P(X>12)=P(\frac{X-\mu}{\sigma}>\frac{12-\mu}{\sigma})=P(Z>\frac{12-14}{3})=P(z>-0.67)[/tex]
And we can find this probability with the complement rule and with the normal standard table we got:
[tex]P(z>-0.67)=1-P(z<-0.67)=1-0.2514=0.7486 [/tex]
Step-by-step explanation:
Let X the random variable that represent the components whose lenghts of a population, and for this case we know the distribution for X is given by:
[tex]X \sim N(14,\sqrt{9}=3)[/tex]
Where [tex]\mu=14[/tex] and [tex]\sigma=3[/tex]
We are interested on this probability
[tex]P(X>12)[/tex]
And we can use the z score given by:
[tex]z=\frac{x-\mu}{\sigma}[/tex]
Using this formula we got:
[tex]P(X>12)=P(\frac{X-\mu}{\sigma}>\frac{12-\mu}{\sigma})=P(Z>\frac{12-14}{3})=P(z>-0.67)[/tex]
And we can find this probability with the complement rule and with the normal standard table we got:
[tex]P(z>-0.67)=1-P(z<-0.67)=1-0.2514=0.7486 [/tex]
Answer:
The desired probability is P(X≥12), so subtract from 1 to get P(X≥12)=1−0.2525=0.7475.
Step-by-step explanation: