Respuesta :

Answer:

Step-by-step explanation:

1) first, lets rationalize the denominator by eliminating [tex]1+\frac{1}{\sqrt{2} }[/tex]

so multiply [tex]\frac{1}{1+\frac{1}{\sqrt{2} } }[/tex]  with the conjugate, [tex]1-\frac{1}{\sqrt{2} }[/tex]

we multiply with the conjugate (opposite) since we can take the conjugate and the original term in the form of (a+b)(a-b)= a^2-b^2, which would allow us to get rid of the square root:

so

(1+1/[tex]\sqrt{2}[/tex])(1-[tex]\frac{1}{\sqrt{2} }[/tex])=(1)^2-([tex]\frac{1}{\sqrt{2} }[/tex])^2

hence we are left with:

1-1/2= 0.5

0.5 is the denominator:

since conjugate is multiplied to both numerator and denominator:

for the numerator (1)([tex]1-\frac{1}{\sqrt{2} }[/tex])

is: 1-[tex]\frac{1}{\sqrt{2} }[/tex]

hence, [tex]\frac{1-\frac{1}{\sqrt{2} } }{0.5}[/tex]

so[tex]1-\frac{1}{\sqrt{2} }[/tex]

is 0.292893

so

0.292893/0.5= 0.058579

and 2-sqrt(2)= 0.058579

hence they both are equal

hope this helps!

ACCESS MORE