Answer:
128
Explanation:
Step 1: Write the balanced equation
H₂(g) + I₂(g) ⇌ 2 HI(g)
Step 2: Make an ICE chart
H₂(g) + I₂(g) ⇌ 2 HI(g)
I 3.75 2.15 0
C -x -x +2x
E 3.75-x 2.15-x 2x
Step 3: Find the value of x
Since the concentration of I₂ at equilibrium is 0.0800 M,
2.15M-x = 0.0800 M
x = 2.07 M
Step 4: Calculate the concentrations at equilibrium
[H₂] = 3.75-x = 3.75-2.07 = 1.68 M
[I₂] = 0.0800 M
[HI] = 2x = 2(2.07) = 4.14 M
Step 5: Calculate the equilibrium constant Kc
[tex]Kc= \frac{[HI]^{2} }{[H_2]\times [I_2]} = \frac{4.14^{2} }{1.68\times 0.0800} = 128[/tex]