Determine whether b can be written as a linear combination of Bold a Subscript Bold 1a1​, Bold a Subscript Bold 2a2​, and Bold a Subscript Bold 3a3. In other​ words, determine whether weights x 1x1​, x 2x2​, and x 3x3 ​exist, such that x 1x1Bold a Subscript Bold 1a1plus+x 2x2Bold a Subscript Bold 2a2plus+x 3x3Bold a Subscript Bold 3a3equals=b. Determine the weights x 1x1​, x 2x2​, and x 3x3 if possible.

Respuesta :

Complete  Question

The complete question is shown on the first uploaded image

Answer:

 a

    b can be written as a linear combination of  [tex]a_1 \ and \ a_2[/tex]

b

   The values of   [tex]x_1 = 4 \ and \ x_2 = 2[/tex]

Step-by-step explanation:

From the question we are told that

      [tex]x_1 a_1 +x_2 a_2 = b[/tex]

Where [tex]a_ 1 = (4, 5,-4)[/tex],  [tex]a_2 = (-4 , 3, 3)[/tex] and  [tex]b = (8,26 , -10)[/tex]

   So  

      [tex]x_1 ( 4, 5,-4) + x_2 (-4 , 3, 3) = (8,26 , -10)[/tex]

     [tex]4x_1, 5x_1,-4x_1 + -4x_2 , 3x_2, 3x_2 = (8,26 , -10)[/tex]

=>   [tex]4x_1 -4x_2 =8[/tex]

     [tex]x_1 -x_2 =2 ---(1)[/tex]

=>   [tex]5x_1 + 3x_2 = 26 --- (2)[/tex]

=>   [tex]-4x_1 + 3x_2 = -10 ---(3)[/tex]

Now multiplying equation 1 by 3 and adding the product to equation 2

          [tex].\ \ \ 3x_1 -3x_2 = 6\\+ \ \ 5x_1 + 3x_2 = 26 \\=> \ \ \ 8x_1 = 32[/tex]

=>        [tex]x_1 = 4[/tex]

 substituting [tex]x_1[/tex] into equation 1

        [tex]4 - x_2 =2[/tex]

        [tex]x_2 =2[/tex]

Now to test substitute [tex]x_1 \ and \ x_2[/tex] into equation 3

       [tex]-4(4) + 3(2) = -10[/tex]

      [tex]-10 = -10[/tex]

Since LHS = RHS then there exist values [tex]x_1 = 4 \ and \ x_2 = 2[/tex]  such that

       [tex]x_1 a_1 +x_2 a_2 = b[/tex]

Hence b can be written as a linear combination of  [tex]a_1 \ and \ a_2[/tex]

     

Ver imagen okpalawalter8
ACCESS MORE