Respuesta :
Complete Question
The complete question is shown on the first uploaded image
Answer:
a
b can be written as a linear combination of [tex]a_1 \ and \ a_2[/tex]
b
The values of [tex]x_1 = 4 \ and \ x_2 = 2[/tex]
Step-by-step explanation:
From the question we are told that
[tex]x_1 a_1 +x_2 a_2 = b[/tex]
Where [tex]a_ 1 = (4, 5,-4)[/tex], [tex]a_2 = (-4 , 3, 3)[/tex] and [tex]b = (8,26 , -10)[/tex]
So
[tex]x_1 ( 4, 5,-4) + x_2 (-4 , 3, 3) = (8,26 , -10)[/tex]
[tex]4x_1, 5x_1,-4x_1 + -4x_2 , 3x_2, 3x_2 = (8,26 , -10)[/tex]
=> [tex]4x_1 -4x_2 =8[/tex]
[tex]x_1 -x_2 =2 ---(1)[/tex]
=> [tex]5x_1 + 3x_2 = 26 --- (2)[/tex]
=> [tex]-4x_1 + 3x_2 = -10 ---(3)[/tex]
Now multiplying equation 1 by 3 and adding the product to equation 2
[tex].\ \ \ 3x_1 -3x_2 = 6\\+ \ \ 5x_1 + 3x_2 = 26 \\=> \ \ \ 8x_1 = 32[/tex]
=> [tex]x_1 = 4[/tex]
substituting [tex]x_1[/tex] into equation 1
[tex]4 - x_2 =2[/tex]
[tex]x_2 =2[/tex]
Now to test substitute [tex]x_1 \ and \ x_2[/tex] into equation 3
[tex]-4(4) + 3(2) = -10[/tex]
[tex]-10 = -10[/tex]
Since LHS = RHS then there exist values [tex]x_1 = 4 \ and \ x_2 = 2[/tex] such that
[tex]x_1 a_1 +x_2 a_2 = b[/tex]
Hence b can be written as a linear combination of [tex]a_1 \ and \ a_2[/tex]
![Ver imagen okpalawalter8](https://us-static.z-dn.net/files/dcc/378c7fb645acdc05a62731fdeed486fa.png)