Evaluate the integral ∫2032x2+4dx. Your answer should be in the form kπ, where k is an integer. What is the value of k? (Hint: darctan(x)dx=1x2+1 ) k= 4 (b) Now, lets evaluate the same integral using power series. First, find the power series for the function f(x)=32x2+4. Then, integrate it from 0 to 2, and call it S. S should be an infinite series ∑[infinity]n=0an . What are the first few terms of S?

Respuesta :

Here is the correct computation of the question;

Evaluate the integral :

[tex]\int\limits^2_0 \ \dfrac{32}{x^2 +4} \ dx[/tex]

Your answer should be in the form kπ, where k is an integer. What is the value of k?

(Hint:  [tex]\dfrac{d \ arc \ tan (x)}{dx} =\dfrac{1}{x^2 + 1}[/tex])

k = 4

(b) Now, lets evaluate the same integral using power series.

[tex]f(x) = \dfrac{32}{x^2 +4}[/tex]

Then, integrate it from 0 to 2, and call it S. S should be an infinite series

What are the first few terms of S?

Answer:

(a) The value of k = 4

(b)

[tex]a_0 = 16\\ \\ a_1 = -4 \\ \\ a_2 = \dfrac{12}{5} \\ \\a_3 = - \dfrac{12}{7} \\ \\ a_4 = \dfrac{12}{9}[/tex]

Step-by-step explanation:

(a)

[tex]\int\limits^2_0 \dfrac{32}{x^2 + 4} \ dx[/tex]

[tex]= 32 \int\limits^2_0 \dfrac{1}{x+4}\ dx[/tex]

[tex]=32 (\dfrac{1}{2} \ arctan (\dfrac{x}{2}))^2__0[/tex]

[tex]= 32 ( \dfrac{1}{2} arctan (\dfrac{2}{2})- \dfrac{1}{2} arctan (\dfrac{0}{2}))[/tex]

[tex]= 32 ( \dfrac{1}{2}arctan (1) - \dfrac{1}{2} arctan (0))[/tex]

[tex]= 32 ( \dfrac{1}{2}(\dfrac{\pi}{4})- \dfrac{1}{2}(0))[/tex]

[tex]= 32 (\dfrac{\pi}{8}-0)[/tex]

[tex]= 32 ( (\dfrac{\pi}{8}))[/tex]

[tex]= 4 \pi[/tex]

The value of k = 4

(b) [tex]\dfrac{32}{x^2+4}= 8 - \dfrac{3x^2}{2^1}+ \dfrac{3x^4}{2^3}- \dfrac{3x^6}{2x^5}+ \dfrac{3x^8}{2^7} -... \ \ \ \ \ (Taylor\ \ Series)[/tex]

[tex]\int\limits^2_0 \dfrac{32}{x^2+4}= \int\limits^2_0 (8 - \dfrac{3x^2}{2^1}+ \dfrac{3x^4}{2^3}- \dfrac{3x^6}{2x^5}+ \dfrac{3x^8}{2^7} -...) dx[/tex]

[tex]S = 8 \int\limits^2_0dx - \dfrac{3}{2^1} \int\limits^2_0 x^2 dx + \dfrac{3}{2^3}\int\limits^2_0 x^4 dx - \dfrac{3}{2^5}\int\limits^2_0 x^6 dx+ \dfrac{3}{2^7}\int\limits^2_0 x^8 dx-...[/tex]

[tex]S = 8(x)^2_0 - \dfrac{3}{2^1*3}(x^3)^2_0 +\dfrac{3}{2^3*5}(x^5)^2_0- \dfrac{3}{2^5*7}(x^7)^2_0+ \dfrac{3}{2^7*9}(x^9)^2_0-...[/tex]

[tex]S= 8(2-0)-\dfrac{1}{2^1}(2^3-0^3)+\dfrac{3}{2^3*5}(2^5-0^5)- \dfrac{3}{2^5*7}(2^7-0^7)+\dfrac{3}{2^7*9}(2^9-0^9)-...[/tex]

[tex]S= 8(2-0)-\dfrac{1}{2^1}(2^3)+\dfrac{3}{2^3*5}(2^5)- \dfrac{3}{2^5*7}(2^7)+\dfrac{3}{2^7*9}(2^9)-...[/tex]

[tex]S = 16-2^2+\dfrac{3}{5}(2^2) -\dfrac{3}{7}(2^2) + \dfrac{3}{9}(2^2) -...[/tex]

[tex]S = 16-4 + \dfrac{12}{5}- \dfrac{12}{7}+ \dfrac{12}{9}-...[/tex]

[tex]a_0 = 16\\ \\ a_1 = -4 \\ \\ a_2 = \dfrac{12}{5} \\ \\a_3 = - \dfrac{12}{7} \\ \\ a_4 = \dfrac{12}{9}[/tex]

ACCESS MORE