Answer:
[tex]t=\frac{\bar X-\mu_o}{\frac{s}{\sqrt{n}}}[/tex] (1)
Replacing the info given we got:
[tex]t=\frac{9.41-9.33}{\frac{0.24}{\sqrt{81}}}=3[/tex]
Step-by-step explanation:
Information given
[tex]\bar X=9.41[/tex] represent the sample mean
[tex]s=0.24[/tex] represent the sample standard deviation
[tex]n=81[/tex] sample size
[tex]\mu_o =9.33[/tex] represent the value to verify
[tex]\alpha=0.05[/tex] represent the significance level
t would represent the statistic
[tex]p_v[/tex] represent the p value
Hypothesis to test
We want to test if the true mean is higher than 9.33, the system of hypothesis would be:
Null hypothesis:[tex]\mu \leq 9.33[/tex]
Alternative hypothesis:[tex]\mu > 9.33[/tex]
The statistic is given by:
[tex]t=\frac{\bar X-\mu_o}{\frac{s}{\sqrt{n}}}[/tex] (1)
Replacing the info given we got:
[tex]t=\frac{9.41-9.33}{\frac{0.24}{\sqrt{81}}}=3[/tex]