Answer:
(a)
[tex]\left|\begin{array}{c|c|c}---&---&---\\x&\$0&\$3\\---&---&---\\P(x)&\dfrac13&\dfrac23\\---&---&---\\\end{array}\right|[/tex]
(b)$2
Step-by-step explanation:
In the given game of rolling a die. these are the possible winnings.
There are 6 sides in the die.
[tex]P($obtaining a 1,2,4 or 6)=\dfrac46=\dfrac23\\P($obtaining a 3 or 5)=\dfrac26=\dfrac13[/tex]
(i)The probability distribution of x.
Let x be the amount won
Therefore:
Probability distribution of x.
[tex]\left|\begin{array}{c|c|c}---&---&---\\x&\$0&\$3\\---&---&---\\P(x)&\dfrac13&\dfrac23\\---&---&---\\\end{array}\right|[/tex]
(ii) Expected amount of dollar won
Expected Amount
[tex]=\sum x_iP(x_i)\\=(0*\dfrac13)+(3*\dfrac23)\\=\$2\\[/tex]
You would expect to win $2.