Answer:
Step-by-step explanation:
Let X denote the first step
Let Y denote the second step
Then
E(X) = 0.2
E (Y) = 0.3
V (X) = 0.04
V (Y) = 0.09
Now,
E(X,Y) = E[X] + E{Y}
0.2 + 0.3 = 0.5
And since X and Y are independent
Therefore,
V(X , Y) = V(X) + V(Y)
= 0.04 + 0.09
= 0.13
Now required probability is
[tex]P\{ \sum X_i+\sum Y_i<8 \}=P\{ \frac{\sum X_i + \sum Y_i-nE[X+Y]}{\sqrt{Var(X+Y)n} } <\frac{8-20\times0.5}{\sqrt{0.13\times20} } \}\\\\=P\{Z_n<\frac{8-10}{\sqrt{2.6} } \}\\\\=P\{Z_n<-1.24\}[/tex]
= Φ(-1.24)
= 1 - Φ (1.24)
= 1 - 0.8925
= 0.1075