Respuesta :
Answer:
a) [tex]P(X=3)=(12C3)(0.21)^3 (1-0.21)^{12-3}=0.2442[/tex]
b) [tex]P(X \geq 4) =1- P(X<4) =1-P(X\leq 3)[/tex]
And we can find the individual probabilities:
[tex]P(X=0)=(12C0)(0.21)^0 (1-0.21)^{12-0}=0.059[/tex]
[tex]P(X=1)=(12C1)(0.21)^1 (1-0.21)^{12-1}=0.1885[/tex]
[tex]P(X=2)=(12C2)(0.21)^2 (1-0.21)^{12-2}=0.2756[/tex]
[tex]P(X=3)=(12C3)(0.21)^3 (1-0.21)^{12-3}=0.2442[/tex]
And replacing we got:
[tex]P(X \geq 4)= 1-[P(X=0)+P(X=1) +P(X=2) +P(X=3)]= 1 -[0.059+0.1885+0.2756+0.2442]= 0.2327[/tex]
c) [tex]P(X=8)=(12C8)(0.21)^8 (1-0.21)^{12-8}=0.000729[/tex]
[tex]P(X=9)=(12C9)(0.21)^9 (1-0.21)^{12-9}=8.62x10^{-5}[/tex]
[tex]P(X=10)=(12C10)(0.21)^{10} (1-0.21)^{12-10}=6.87x10^{-6}[/tex]
[tex]P(X=11)=(12C11)(0.21)^{11} (1-0.21)^{12-11}=3.32x10^{-7}[/tex]
[tex]P(X=12)=(12C12)(0.21)^{12} (1-0.21)^{12-12}=7.36x10^{-9}[/tex]
And replacing we got:
[tex] P(X<8) = 0.94[/tex]
Step-by-step explanation:
Let X the random variable of interest "number of US adults who favor the use of unmanned drones", on this case we now that:
[tex]X \sim Binom(n=12, p=0.21)[/tex]
The probability mass function for the Binomial distribution is given as:
[tex]P(X)=(nCx)(p)^x (1-p)^{n-x}[/tex]
Where (nCx) means combinatory and it's given by this formula:
[tex]nCx=\frac{n!}{(n-x)! x!}[/tex]
Part a
[tex] P(X=3)[/tex]
[tex]P(X=3)=(12C3)(0.21)^3 (1-0.21)^{12-3}=0.2442[/tex]
Part b
We want to find this probability:
[tex] P(X \geq 4)[/tex]
And we can use the complement rule and we got:
[tex]P(X \geq 4) =1- P(X<4) =1-P(X\leq 3)[/tex]
And we can find the individual probabilities:
[tex]P(X=0)=(12C0)(0.21)^0 (1-0.21)^{12-0}=0.059[/tex]
[tex]P(X=1)=(12C1)(0.21)^1 (1-0.21)^{12-1}=0.1885[/tex]
[tex]P(X=2)=(12C2)(0.21)^2 (1-0.21)^{12-2}=0.2756[/tex]
[tex]P(X=3)=(12C3)(0.21)^3 (1-0.21)^{12-3}=0.2442[/tex]
And replacing we got:
[tex]P(X \geq 4)= 1-[P(X=0)+P(X=1) +P(X=2) +P(X=3)]= 1-[0.059+0.1885+0.2756+0.2442]= 0.2327[/tex]
Part c
We want this probability:
[tex] P(X<8)[/tex]
And using the complement rule got:
[tex] P(X<8) =1-P(X \geq 8)= 1- [P(X=8) +P(X=9) +P(X=10) +P(X=11)+P(X=12)][/tex]
And we have this:
[tex]P(X=8)=(12C8)(0.21)^8 (1-0.21)^{12-8}=0.000729[/tex]
[tex]P(X=9)=(12C9)(0.21)^9 (1-0.21)^{12-9}=8.62x10^{-5}[/tex]
[tex]P(X=10)=(12C10)(0.21)^{10} (1-0.21)^{12-10}=6.87x10^{-6}[/tex]
[tex]P(X=11)=(12C11)(0.21)^{11} (1-0.21)^{12-11}=3.32x10^{-7}[/tex]
[tex]P(X=12)=(12C12)(0.21)^{12} (1-0.21)^{12-12}=7.36x10^{-9}[/tex]
And replacing we got:
[tex] P(X<8) = 0.94[/tex]