Answer:
71.4699, 81.7301.
Step-by-step explanation:
So, the following are the scores: 74
90
84
78
61
65
62
67
73
75
76
95
71
98
80
[tex]Let,\;the\;total\;sum\;of\;the\;scores\;be:\sum x =1149[/tex]
[tex]Then,\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\sum x^2=89795[/tex]
The length of the score : 15
Then, let the size of the scores be n : 15.
Then, we have to find the mean.
[tex]\bar{x}=\frac{\sum x}{n}[/tex]
[tex]=\frac{1149}{15}=76.6[/tex]
[tex]Then,\;we\;have\;to\;find\;standard\;deviation:S=\sqrt{\frac{\sum x^2-n.(\bar{x})^2}{n-1} }[/tex]
[tex]=\sqrt{\frac{89795-15\times(76.6)^2}{15-1} }=11.2808[/tex]
[tex]The\;degree\;of\;freedom:n-1=14[/tex]
[tex]So,\;the\;significant\;level:\alpha=1-0.90=0.10[/tex]
[tex]and\;the\;critical\;value:t_{\frac{\alpha}{2} }=1.7613[/tex]
[tex]Finally:\\=\bar{x}\;\pm\;t_{\frac{\alpha}{2} }\;\frac{S}{\sqrt{n} }\\=(71.4699, 81.7301)[/tex]