Previous Question Question 14 of 20 Next Question A company randomly surveys 15 VIP customers and records their customer satisfaction scores out of a possible 100 points. Based on the data provided, calculate a 90% confidence interval to estimate the true satisfaction score of all VIP customers.

Respuesta :

Limosa

Answer:

71.4699, 81.7301.

Step-by-step explanation:

So, the following are the scores: 74

90

84

78

61

65

62

67

73

75

76

95

71

98

80

[tex]Let,\;the\;total\;sum\;of\;the\;scores\;be:\sum x =1149[/tex]

[tex]Then,\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\sum x^2=89795[/tex]

The length of the score : 15

Then, let the size of the scores be n : 15.

Then, we have to find the mean.

                                      [tex]\bar{x}=\frac{\sum x}{n}[/tex]

                                         [tex]=\frac{1149}{15}=76.6[/tex]

[tex]Then,\;we\;have\;to\;find\;standard\;deviation:S=\sqrt{\frac{\sum x^2-n.(\bar{x})^2}{n-1} }[/tex]

                                         [tex]=\sqrt{\frac{89795-15\times(76.6)^2}{15-1} }=11.2808[/tex]

[tex]The\;degree\;of\;freedom:n-1=14[/tex]

[tex]So,\;the\;significant\;level:\alpha=1-0.90=0.10[/tex]

[tex]and\;the\;critical\;value:t_{\frac{\alpha}{2} }=1.7613[/tex]

[tex]Finally:\\=\bar{x}\;\pm\;t_{\frac{\alpha}{2} }\;\frac{S}{\sqrt{n} }\\=(71.4699, 81.7301)[/tex]

ACCESS MORE