8. In the figure, ADC is a straight line.
(a) Prove that triangle ABC ~ triangle BDC.
(b) Find the length of BD.

8 In the figure ADC is a straight linea Prove that triangle ABC triangle BDCb Find the length of BD class=

Respuesta :

Answer:

a). ΔABC ~ ΔBDC

b). m(BD) = 6 units

Step-by-step explanation:

If ΔABC ~ ΔBDC,

a). Ratio of the corresponding sides of both the triangles will be equal.

[tex]\frac{AB}{BD}=\frac{BC}{DC}=\frac{AC}{BC}[/tex]

[tex]\frac{BC}{DC}=\frac{AC}{BC}[/tex]

[tex]\frac{12}{9}=\frac{7+9}{12}[/tex]

[tex]\frac{4}{3}=\frac{4}{3}[/tex]

Since Ratio of the corresponding sides are same, therefore, both the triangles are similar.

b). [tex]\frac{AB}{BD}=\frac{BC}{DC}[/tex]

[tex]\frac{8}{BD}=\frac{12}{9}[/tex]

BD = [tex]\frac{9\times 8}{12}[/tex]

BD = 6

ACCESS MORE