The horizontal distance travelled by the object will be "111.07 m".
According to the question,
[tex]u_v = u sin\Theta[/tex]
[tex]= 25 \ sin30^{\circ}[/tex]
[tex]= 12.5 \ m/s[/tex]
As we know,
→ [tex]s = ut +\frac{1}{2} at^2[/tex]
[tex]-y = u_vt-\frac{1}{2}gt^2[/tex]
[tex]-65 =12.5t - \frac{1}{2}\times 9.8t^2[/tex]
[tex]0 = 4.9t^2-12.5t-65[/tex]
[tex]t = \frac{12.5 \pm \sqrt{(-12.5)^2-4\times 4.9\times (-65)} }{2\times 4.9}[/tex]
[tex]= 5.13 \ s[/tex]
hence,
The horizontal distance will be:
→ [tex]u_x = ucos \Theta[/tex]
[tex]= 25 cos 30^{\circ}[/tex]
[tex]= 21.65 \ m/s[/tex]
or,
→ [tex]x = 21.65\times 5.13[/tex]
[tex]= 111.07 \ m[/tex]
Thus the response above is right.
Learn more:
https://brainly.com/question/12163523