A projectile is launched with an initial velocity of 25 m/s at an angle of 30° above the horizontal. The projectile reaches maximum height at point p then falls to point a, which is 65 m below the cliff. What is the horizontal distance that it travels (labeled x in the diagram)

A projectile is launched with an initial velocity of 25 ms at an angle of 30 above the horizontal The projectile reaches maximum height at point p then falls to class=

Respuesta :

Answer:

x ≈ 56 m

Explanation:

vertical initial velocity =[tex]v_{0y}(t)[/tex] = 25 m/s* sin(30°)= 12.5 m/s

height = h

[tex]h =v_{0y}t+\frac{at^{2}}{2} \\\\65m = 12.5m/s*t + \frac{9.8m/s^{2}*t^{2}}{2} \\\\t=2.584 s[/tex]

t- time is found solving quadratic equation.

horizontal velocity = [tex]v_{0x}=25m/s*cos(30^{o})=21.65 m/s[/tex]

Horizontal velocity is constant, so distance [tex]x=v_{0x}*t =21.65 m/s *2.584 s=55.9 = 56 m[/tex]

The horizontal distance travelled by the object will be "111.07 m".

According to the question,

[tex]u_v = u sin\Theta[/tex]

    [tex]= 25 \ sin30^{\circ}[/tex]

    [tex]= 12.5 \ m/s[/tex]

As we know,

→  [tex]s = ut +\frac{1}{2} at^2[/tex]

 [tex]-y = u_vt-\frac{1}{2}gt^2[/tex]

[tex]-65 =12.5t - \frac{1}{2}\times 9.8t^2[/tex]

   [tex]0 = 4.9t^2-12.5t-65[/tex]

    [tex]t = \frac{12.5 \pm \sqrt{(-12.5)^2-4\times 4.9\times (-65)} }{2\times 4.9}[/tex]

       [tex]= 5.13 \ s[/tex]

hence,

The horizontal distance will be:

→ [tex]u_x = ucos \Theta[/tex]

       [tex]= 25 cos 30^{\circ}[/tex]

       [tex]= 21.65 \ m/s[/tex]

or,

→ [tex]x = 21.65\times 5.13[/tex]

     [tex]= 111.07 \ m[/tex]

Thus the response above is right.  

Learn more:

https://brainly.com/question/12163523

Ver imagen Cricetus
ACCESS MORE