Answer:
0.573 m
Step-by-step explanation:
a. To find the depth, x, we first solve the differential equation to find the expression for I
dI/dx = (-1.21)I
dI = (-1.21)Idx
dI/I = -1.21dx
Integrating both sides, we have
∫dI/I = ∫-1.21dx
㏑I = -1.21x + C
I = exp(-1.21x + C)
I = exp(-1.21x)exp(C) Let exp(C) = A
I =Aexp(-1.21x)
when x = 0, I = L. Substituting these into the equation, we have
L = Aexp(-1.21 × 0)
L = Aexp(0)
L = A
So, I = Lexp(-1.21x)
we want to find x when I = L/2.
So, L/2 = Lexp(-1.21x)
1/2 = exp(-1.21x)
-1.21x= ㏑(1/2)
-1.21x= -㏑2
x = -㏑2/-1.21
x = 0.693/1.21
x = 0.573 m