Answer:
Process Capability Index = 0.412
Process Capability Ratio = 0.62
Explanation:
The Process Capability Index [tex]C_{pk}[/tex] is given by the formula:
[tex]C_{pk} = min[\frac{\bar{\bar{X}} - LSL}{3 \sigma} , \frac{USL - \bar{\bar{X}} }{3 \sigma}][/tex]
[tex]\bar{\bar{X}} = \frac{7+9+5+13+10+8+14+13+10+11+15+6+12+11+6}{15} \\\bar{\bar{X}} = 10[/tex]
Lower Limit, LSL = 4
Upper Limit, USL = 22
Standard Deviation, [tex]\sigma = 4.85[/tex]
[tex]C_{pk} = min[\frac{\bar{\bar{X}} - LSL}{3 \sigma} , \frac{USL - \bar{\bar{X}} }{3 \sigma}]\\C_{pk} = min[\frac{10 - 4}{3 * 4.85} , \frac{22 - 4 }{3 *4.85}]\\C_{pk} = min[0.412, 0.825]\\C_{pk} = 0.412[/tex]
Process capability ratio:
[tex]C_p = \frac{USL - LSL}{3 \sigma}[/tex]
[tex]C_{p} = \frac{22-4}{6*4.85} \\C_{p} = 0.62[/tex]