Answer:
a) [tex]v=\frac{dr}{dt}=2(\pi-8)sin(4\theta)\\[/tex]
b) [tex]a=8\pi^2(1-8t)^2cos(4\theta)[/tex]
Explanation:
a) You have the following motion equation:
[tex]r=3+0.5cos(4\theta)\\\\\theta=-\pi4t^2+\pi t[/tex]
The velocity, in polar coordinates, is given by:
[tex]\frac{dr}{dt}=\frac{dr}{d\theta}\frac{d\theta}{dt}[/tex]
You calculate the derivatives:
[tex]\frac{dr}{d\theta}=0.5(4)sin(4\theta)=-2sin(4\theta)\\\\\frac{d\theta}{dt}=-8\pi t+\pi\\\\v=\frac{dr}{dt}=-2\pi(1-8t)sin(4\theta)[/tex]
b) the acceleration is:
[tex]a=\frac{dv}{dt}=\frac{dv}{d\theta}\frac{d\theta}{dt}\\\\\frac{dv}{d\theta}=-8\pi(1-8t)cos(4\theta)\\\\\frac{d\theta}{dt}=-8\pi t+\pi \\\\a=8\pi^2(1-8t)^2cos(4\theta)[/tex]