For questions 13 – 15, find x so that q || r. State the converse used.

Answer:
13. x = 7 ; Converse : Alternate interior angles are equal .
14. x=12; Converse used : Linear pair
15. x = 23; Converse: Corresponding angles are equal
Step-by-step explanation:
13.
Refer the attached figure
Given: q || r
[tex]\angle CBE =\angle DEB[/tex] (Alternate interior angles )
So, 15x+3=108
15x=108-3
15x=105
[tex]x=\frac{105}{15}[/tex]
x=7
So, x = 7 ; Converse : Alternate interior angles are equal .
14.
Refer the attached figure
Given q||r
[tex]\angle PQT = \angle STQ[/tex] (Alternate interior angles
So,[tex]\angle PQT = \angle STQ=11x-28[/tex]
Now[tex]\angle UTQ + \angle STQ = 180^{\circ}[/tex](Linear pair)
So,7x-8+11x-28=180
18x-36= 180
18x=216
[tex]x=\frac{216}{18}[/tex]
x=12
So, x=12; Converse used : Linear pair
15.
Refer the attached figure
Given q||r
[tex]\angle BDC+\angle CDE = 90+2x[/tex]
[tex]\angle BDE=\angle PBC[/tex](corresponding angles)
90+2x=5x+21
90-21=5x-2x
69=3x
23=x
So, x = 23; Converse: Corresponding angles are equal
Answer:
(See below)
Step-by-step explanation:
13) x = 7 ; Alternate interior angles are equal .
14) x = 12; Linear pair
15) x = 23; Corresponding angles are equal