Answer:
Explanation:
given amount of salt at time t is A(t)
initial amount of salt =300 gm =0.3kg
=>A(0)=0.3
rate of salt inflow =5*0.4= 2 kg/min
rate of salt out flow =5*A/(200)=A/40
rate of change of salt at time t , dA/dt= rate of salt inflow- ratew of salt outflow
[tex]dA/dt=2-(A/40)\\\\dA=2dt-(A/40)dt\\\\dA+(A/40)dt=2dt[/tex]
integrating factor
[tex]=e^{\int\limits (1/40) \, dt}[/tex]
integrating factor [tex]=e^{(1/40)t}[/tex]
multiply on both sides by [tex]=e^{(1/40)t}[/tex]
[tex]dAe^{(1/40)t}+(A/40)e^{(1/40)t} dt =2e^{(1/40)t}t\\\\(Ae^{(1/40)t})=2e^{(1/40)t}t[/tex]
integrate on both sides
[tex]\int\limits(Ae^{(1/40)t})=\int\limits2e^{(1/40)t}dt\\\\(Ae^{(1/40)t})=2*40e^{(1/40)t}+C\\\\A=80+(C/e^{(1/40)t})\\\\A(0)=0.3\\\\0.3=80+(C/e^{(1/40)t}^*^0)\\\\0.3=80+(C/1)\\\\C=0.3-80\\\\C=-79.7\\\\A(t)=80-(79.7/e^{(1/40)t})[/tex]
b)
after long period of time means t - > ∞
[tex]{t \to \infty}\\\\ \lim_{t \to \infty} A_t \\\\ \lim_{t \to \infty} (80)-(79/{e^{(1/40)t}}\\\\=80-(0)\\\\=80[/tex]