Answer:
a) FE = 0.764FG
b) a = 2.30 m/s^2
Explanation:
a) To compare the gravitational and electric force over the particle you calculate the following ratio:
[tex]\frac{F_E}{F_G}=\frac{qE}{mg}[/tex] (1)
FE: electric force
FG: gravitational force
q: charge of the particle = 1.6*10^-19 C
g: gravitational acceleration = 9.8 m/s^2
E: electric field = 103N/C
m: mass of the particle = 2.2*10^-15 g = 2.2*10^-18 kg
You replace the values of all parameters in the equation (1):
[tex]\frac{F_E}{F_G}=\frac{(1.6*10^{-19}C)(103N/C)}{(2.2*10^{-18}kg)(9.8m/s^2)}\\\\\frac{F_E}{F_G}=0.764[/tex]
Then, the gravitational force is 0.764 times the electric force on the particle
b)
The acceleration of the particle is obtained by using the second Newton law:
[tex]F_E-F_G=ma\\\\a=\frac{qE-mg}{m}[/tex]
you replace the values of all variables:
[tex]a=\frac{(1.6*10^{-19}C)(103N/C)-(2.2*10^{-18}kg)(9.8m/s^2)}{2.2*10^{-18}kg}\\\\a=-2.30\frac{m}{s^2}[/tex]
hence, the acceleration of the particle is 2.30m/s^2, the minus sign means that the particle moves downward.