Respuesta :
Answer:
[tex]\frac{2 \pi r}{\frac{360^{\circ}}{n^{\circ}}}[/tex] best completes this argument
Step-by-step explanation:
Circumference of circle =[tex]\pi \cdot d[/tex]
Where d is the diameter of circle
We are given that if equally sized central angles, each with a measure of n°, are drawn, the number of sectors that are formed will be equal to [tex]\frac{360^{\circ}}{n^{\circ}}[/tex]
So, Number of sectors = [tex]\frac{360^{\circ}}{n^{\circ}}[/tex]
The arc length of each sector is the circumference divided by the number of sectors
[tex]\Rightarrow \frac{\pi \cdot d}{\frac{360^{\circ}}{n^{\circ}}}[/tex]
Diameter d = 2r (r = radius)
[tex]\Rightarrow \frac{2 \pi r}{\frac{360^{\circ}}{n^{\circ}}}[/tex]
Option b is true
Hence[tex]\frac{2 \pi r}{\frac{360^{\circ}}{n^{\circ}}}[/tex] best completes this argument
Answer:
2 pie r/ 360 over n
Step-by-step explanation:
just did this