A wire of length 26.0 cm carrying a current of 5.77 mA is to be formed into a circular coil and placed in a uniform magnetic field B of magnitude 3.67 mT. If the torque on the coil from the field is maximized, what is the magnitude of that maximum torque

Respuesta :

Answer:

The maximum torque is  [tex]\tau_{max} = 1.139 *10^{-7} \ N \cdot m[/tex]

Explanation:

From the question we are told that

   The length of the wire is  [tex]l = 26.0 \ cm = 0.26 \ m[/tex]

     The current flowing through the wire is  [tex]I = 5.77mA = 5.77 *10^{-3} \ A[/tex]

      The magnetic field is  [tex]B = 3.67 \ mT = 3.67 *10^{-3 } T[/tex]

         

The maximum torque is mathematically evaluated as

        [tex]\tau_{max} = \mu B[/tex]  

Where [tex]\mu[/tex]  is the magnetic dipole moment which is mathematically represented as

        [tex]\mu = \frac{I l^2}{4 \pi n }[/tex]

Where [tex]n[/tex] is the number of turns which from the question is  1

    substituting values

       [tex]\mu = \frac{ 5.77 *10^{-3} * 0.26^2}{4 * 3.142* 1 }[/tex]

     [tex]\mu = 3.10 4* 10^{-5} A m^2[/tex]

Now  

      [tex]\tau_{max} = 3.104 *10^{-5} * 3.67 *10^{-3}[/tex]  

      [tex]\tau_{max} = 1.139 *10^{-7} \ N \cdot m[/tex]  

ACCESS MORE