Answer:
T = 47.1875°C
Step-by-step explanation:
Given:
Surrounding temp, Ts = 100°C
Initial Temperature ,T0= 20°C
Increase in temperature = 15°C
Final temperature, T = 20 + 15 = 35°C
Time, t = 9 seconds
Let's take Newton's law of cooling:
[tex] T - Ts = (T_0 - Ts)e^k^t [/tex]
We'll solve for k
[tex] 35 - 100 = (20 - 100)e^9^k [/tex]
[tex] -65 = (-80)e^9^k [/tex]
Divide both sides by -5
[tex] 13 = (16)e^9^k [/tex]
[tex] 9k = ln (\frac{13}{16})[/tex]
[tex] k = \frac{1}{9} ln (\frac{13}{16})[/tex]
[tex] k = -0.02307104053 [/tex]
Let's now find the temperature of the ball after 18 seconds in boiling water.
Use the Newton's equation again:
[tex] T - Ts = (T_0 - Ts)e^k^t [/tex]
[tex] T - 100 = (20 - 100)e^-0.0^2^3^0^7^1^0^4^0^5^3^*^1^8 [/tex]
[tex] T - 100 = (-80)e^-0.0^2^3^0^7^1^0^4^0^5^3^*^1^8 [/tex]
[tex] T - 100= -52.8125 [/tex]
[tex] T = 100 - 52.8125 [/tex]
T = 47.1875°C
Temperature of the ball after 18 seconds in boiling water is 47.1875°C