Answer:
Option (2), (3) and (4)
Step-by-step explanation:
Let the equation of the line representing the given table is,
y - y' = m(x - x')
where 'm' = slope of the line
(x', y') is the point lying on the line.
Let the two points (-6, -10) and (-4, -9) lie on the line
Slope 'm' = [tex]\frac{y_{2}-y_{1}}{x_{2}-x_{1}}[/tex]
= [tex]\frac{-9+10}{-4+6}[/tex]
= [tex]\frac{1}{2}[/tex]
Equation of the line passing through (-4, -9) with slope [tex]\frac{1}{2}[/tex] will be
y - (-9) = [tex]\frac{1}{2}(x+4)[/tex]
y + 9 = [tex]\frac{1}{2}(x+4)[/tex]
Equation of the line passing through (-6, -10) with slope = [tex]\frac{1}{2}[/tex]
y - (-10) = [tex]\frac{1}{2}(x+6)[/tex]
y + 10 = [tex]\frac{1}{2}(x+6)[/tex]
Equation of the line passing through (6, -4) and slope = [tex]\frac{1}{2}[/tex]
y + 4 = [tex]\frac{1}{2}(x-6)[/tex]
Therefore, Options (2), (3) and (4) will be the answer.