Respuesta :
Answer:
[tex]R_{in}=0.2\dfrac{mL}{min}[/tex]
[tex]C(t)=\dfrac{A(t)}{30000}[/tex]
[tex]R_{out}= \dfrac{A(t)}{1500} \dfrac{mL}{min}[/tex]
[tex]A(t)=300+2700e^{-\dfrac{t}{1500}},$ A(0)=3000[/tex]
Step-by-step explanation:
The volume of the swimming pool = 30,000 liters
(a) Amount of chlorine initially in the tank.
It originally contains water that is 0.01% chlorine.
0.01% of 30000=3000 mL of chlorine per liter
A(0)= 3000 mL of chlorine per liter
(b) Rate at which the chlorine is entering the pool.
City water containing 0.001%(0.01 mL of chlorine per liter) chlorine is pumped into the pool at a rate of 20 liters/min.
[tex]R_{in}=[/tex](concentration of chlorine in inflow)(input rate of the water)
[tex]=(0.01\dfrac{mL}{liter}) (20\dfrac{liter}{min})\\R_{in}=0.2\dfrac{mL}{min}[/tex]
(c) Concentration of chlorine in the pool at time t
Volume of the pool =30,000 Liter
[tex]Concentration, C(t)= \dfrac{Amount}{Volume}\\C(t)=\dfrac{A(t)}{30000}[/tex]
(d) Rate at which the chlorine is leaving the pool
[tex]R_{out}=[/tex](concentration of chlorine in outflow)(output rate of the water)
[tex]= (\dfrac{A(t)}{30000})(20\dfrac{liter}{min})\\R_{out}= \dfrac{A(t)}{1500} \dfrac{mL}{min}[/tex]
(e) Differential equation representing the rate at which the amount of sugar in the tank is changing at time t.
[tex]\dfrac{dA}{dt}=R_{in}-R_{out}\\\dfrac{dA}{dt}=0.2- \dfrac{A(t)}{1500}[/tex]
We then solve the resulting differential equation by separation of variables.
[tex]\dfrac{dA}{dt}+\dfrac{A}{1500}=0.2\\$The integrating factor: e^{\int \frac{1}{1500}dt} =e^{\frac{t}{1500}}\\$Multiplying by the integrating factor all through\\\dfrac{dA}{dt}e^{\frac{t}{1500}}+\dfrac{A}{1500}e^{\frac{t}{1500}}=0.2e^{\frac{t}{1500}}\\(Ae^{\frac{t}{1500}})'=0.2e^{\frac{t}{1500}}[/tex]
Taking the integral of both sides
[tex]\int(Ae^{\frac{t}{1500}})'=\int 0.2e^{\frac{t}{1500}} dt\\Ae^{\frac{t}{1500}}=0.2*1500e^{\frac{t}{1500}}+C, $(C a constant of integration)\\Ae^{\frac{t}{1500}}=300e^{\frac{t}{1500}}+C\\$Divide all through by e^{\frac{t}{1500}}\\A(t)=300+Ce^{-\frac{t}{1500}}[/tex]
Recall that when t=0, A(t)=3000 (our initial condition)
[tex]3000=300+Ce^{0}\\C=2700\\$Therefore:\\A(t)=300+2700e^{-\dfrac{t}{1500}}[/tex]