Respuesta :
Answer :
- 8038.6 cm³
⠀
Given :
- The diamter of cylinder is 32 cm.
- The Height of the cylinder is 10 cm.
⠀
To Find :
- The Volume of the cylinder .
⠀
Solution :
We know,
[tex]\bf \longrightarrow \qquad Volume_{(cylinder)} = \pi {r}^{2} h \: [/tex]
⠀
Where,
- r is the radius of the cylinder. As the diamter is 32 cm, therefore radius will be 16 cm
- h is the height of the cylinder.
- Here, we will take the value of π as 3.14 approximately .
⠀
Substituting the values in the formula :
⠀
[tex]\sf \longrightarrow \qquad Volume_{(cylinder)} = 3.14 \times {(16)}^{2} \times 10 \: [/tex]
⠀
[tex]\sf \longrightarrow \qquad Volume_{(cylinder)} = 3.14 \times 256 \times 10 \: [/tex]
⠀
[tex] \sf \longrightarrow \qquad Volume_{(cylinder)} = 3.14 \times 2560 \:[/tex]
⠀
[tex]\bf \longrightarrow \qquad Volume_{(cylinder)} = 8038.6[/tex]
⠀
Therefore,
- The volume of the cylinder is 8038.6 cm³
Answer:
Volume of Cylinder is 8038cm³
Step-by-step explanation:
Given :-
⇝ Height :- 10cm
⇝ Diameter :- 32cm , radius = 16cm
To find :-
⇝ Volume of Cylinder
Solution :-
Volume of Cylinder = πr²h
putting the known values ,
3.14 × 16² × 10 cm³
Volume = 8038.4cm³
rounding off to nearest hundredth = 8038cm³