Answer:
[tex]\frac{log(y+4)}{2log3}[/tex]
Step-by-step explanation:
Given the exponential equation [tex]y = 3^{2x}+4[/tex], to get 2x, we will make 2x the subject of the formula as shown;
[tex]y = 3^{2x}-4\\y+4 = 3^{2x}\\taking\ log\ of\ both\ sides\\log(y+4) = log3^{2x}\\ log(y+4) = 2xlog3\\dividing\ both\ sides\ by\ 2log 3\\\ x = \frac{log(y-4)}{2log3} \\[/tex]
The last expression gives the required value of x