Answer:
1. x ≥ 0
2. x ≥ -2
3. x ≥ 2
4. x ≤ 2
5. x ≤ 0
6. All real numbers
Step-by-step explanation:
Domain of square function:
Suppose we have a square function in the following format:
[tex]f(x) = \sqrt[n]{g(x)}[/tex]
If n is even, the domain of f(x) is:
[tex]g(x) \geq 0[/tex]
Otherwise, if n is odd, the domain of f(x) is all real numbers.
1. S(x) = √x
If n does not appear is that it is 2.
g(x) = x
So the domain is:
[tex]x \geq 0[/tex]
2. H(x) = √2+x
g(x) = 2 + x
So
[tex]2 + x \geq 0[/tex]
[tex]x \geq -2[/tex]
3. Z(x) = √x-2
g(x) = x - 2
[tex]x - 2 \geq 0[/tex]
[tex]x \geq 2[/tex]
4. Q(x) = √2-x
g(x) = 2 - x
[tex]2 - x \geq 0[/tex]
[tex]-x \geq -2[/tex]
Multiplying by -1, everything
[tex]x \leq 2[/tex]
5. V(x) = √-x
g(x) = -x
Then
[tex]-x \geq 0[/tex]
Multiplying by -1
[tex]x \leq 0[/tex]
6. N(x) = ^3√2-x
Cubic root(odd number), so all real numbers.