Answer:
Least square regression:
y = 1.0136x + 25.8404
Value of y if x is 4:
y = 29.8936
Step-by-step explanation:
Given:
x' = 12
y' = 38
[tex] \sigma y = 4 [/tex]
[tex] \sigma x = 3 [/tex]
coefficient between x and y, r = 0.76
Take the least square regression as:
y - y' = byx (x - x')
Let's find byx:
[tex] byx = r (\frac{\sigma y}{\sigma x}) [/tex]
[tex]byx = 0.76 (\frac{4}{3}) = 1.0133[/tex]
We'll now compute the least squares regression line for the data, and then predict what the y value should be if x is 4.
Take the regression equation:
y - y' = byx (x - x')
Substitute figures:
y - 38 = 1.0133 (x - 12)
Expand the equation:
y - 38 = 1.0133x - 12.1596
y = 1.0133x - 12.1596 + 38
y = 1.0136x + 25.8404
The y value when x= 4:
y - 38 = 1.0133(4) + 25.8404
y - 38 = 4.0532 + 25.8404
y = 29.8936
Therefore,
Least square regression:
y = 1.0136x + 25.8404
Value of y if x is 4:
y = 29.8936