Respuesta :
Answer:
[tex]P(170<X<220)=P(\frac{170-\mu}{\sigma}<\frac{X-\mu}{\sigma}<\frac{220-\mu}{\sigma})=P(\frac{170-200}{50}<Z<\frac{220-200}{50})=P(-0.6<z<0.4)[/tex]
And we can find the probability with this difference:
[tex]P(-0.6<z<0.4)=P(z<0.4)-P(z<-0.6)[/tex]
And using the normal standard table or excel we got:
[tex]P(-0.6<z<0.4)=P(z<0.4)-P(z<-0.6)=0.6552-0.2742=0.3811[/tex]
And the best answer would be:
0.3811
Step-by-step explanation:
Let X the random variable that represent the ratings of a population, and for this case we know the distribution for X is given by:
[tex]X \sim N(200,50)[/tex]
Where [tex]\mu=200[/tex] and [tex]\sigma=50[/tex]
We are interested on this probability
[tex]P(170<X<220)[/tex]
And the best way to solve this problem is using the normal standard distribution and the z score given by:
[tex]z=\frac{x-\mu}{\sigma}[/tex]
Using the z score we got:
[tex]P(170<X<220)=P(\frac{170-\mu}{\sigma}<\frac{X-\mu}{\sigma}<\frac{220-\mu}{\sigma})=P(\frac{170-200}{50}<Z<\frac{220-200}{50})=P(-0.6<z<0.4)[/tex]
And we can find the probability with this difference:
[tex]P(-0.6<z<0.4)=P(z<0.4)-P(z<-0.6)[/tex]
And using the normal standard table or excel we got:
[tex]P(-0.6<z<0.4)=P(z<0.4)-P(z<-0.6)=0.6552-0.2742=0.3811[/tex]
And the best answer would be:
0.3811