Which of the following describes the transformation of g (x) = 3 (2) Superscript negative x Baseline + 2 from the parent function f (x) = 2 Superscript x?

Respuesta :

Answer:

Reflect across the y-axis, stretch the graph vertically by a factor of 3, shift 2 units up.

Step-by-step explanation:

The original function or the parent function is:

[tex]f(x)=2^{x}[/tex]

And the transformed function is:

[tex]g(x)=3(2)^{-x}+2[/tex]

The transformations are as follows:

  • Reflect the parent function about the y-axis, i.e. y : x → -x.
  • Stretch the graph of the parent function vertically by 3 units, i.e. [tex]3y[/tex]
  • Shift the graph, of the parent function, up by 2 units, i.e. [tex]3y+2[/tex].

The transformed function is thus:

[tex]g(x)=3(2)^{-x}+2[/tex].

Thus, the correct option is:

"Reflect across the y-axis, stretch the graph vertically by a factor of 3, shift 2 units up."

Answer:

D

Step-by-step explanation:

reflect across the y-axis, stretch the graph vertically by a factor of 3, shift 2 units up

ACCESS MORE