helpppppppp meeeeeee
![helpppppppp meeeeeee class=](https://us-static.z-dn.net/files/df3/f09f9e7d9b76539346c818ea81a9e471.png)
Answer:
[tex]4x^5-5x^3-6x[/tex]
Step-by-step explanation:
Given: [tex](x^3-2x)(4x^2+3)[/tex]
To find: the product
Solution:
Use the property: Multiplication is distributive over addition that is [tex]a(b+c)=ab+ac[/tex]
[tex]\left ( x^3-2x \right )\left ( 4x^2+3 \right )=(x^3-2x)4x^2+(x^3-2x)3\\=4x^5-8x^3+3x^3-6x[/tex]
Add the like terms: [tex]-8x^3,3x^3[/tex]
(Like terms are terms that have same variables of same powers)
So,
[tex]\left ( x^3-2x \right )\left ( 4x^2+3 \right )=(x^3-2x)4x^2+(x^3-2x)3\\=4x^5-8x^3+3x^3-6x\\=4x^5-5x^3-6x[/tex]