Verify that the indicated function y = f(x) is an explicit solution of the given first-order differential equation. Proceed as, by considering f simply as a function and give its domain. Then by considering f as a solution of the differential equation, give at least one interval I of definition.
y = 25 + y2; y = 5 tan 5x

Respuesta :

Answer:

Hence the domain of the function y = 5 tan 5x is ,

[tex]\large \boxed {R-\{(2n+1)\frac{\pi}{10},n-1,2,...\} }[/tex]

and largest interval of definition for the solution is [tex]\large \boxed {-\frac{\pi}{10},\frac{\pi}{10} }[/tex]

Step-by-step explanation:

Considering the differential equation

[tex]y' = 25 + y^2---(1)[/tex]

and the function  y = 5 tan 5x

Find the domain of the function  y = 5 tan 5x

Since [tex]y=\frac{5 \sin 5x}{\cos 5x}[/tex] then determine the zeros of the denominator, cos 5x

The zeros of the denominator of cos 5x is [tex]\{ x:x=(2n+1)\frac{\pi}{10} \}[/tex]

Hence the function  y = 5 tan 5x exist on [tex]R-\{(2n+1)\frac{\pi}{10} ,n=1,2...\}[/tex]

Therefore, the domain of the function y = 5 tan 5x is   [tex]R-\{(2n+1)\frac{\pi}{10} ,n=1,2...\}[/tex]

Differential the function  y = 5 tan 5x with respect to x

[tex]\frac{d}{dx} y=\frac{d}{dx} (5 \tan 5x)\\\\y'=5\sec^25x\frac{d}{dx} (5x)\\\\ \text {since }\frac{d}{du} (\tan u)= \sec^2 u\\\\y'=25 \sec^25x[/tex]

Use  trigonometry identity , [tex]1+\tan^2 \theta =\sec^2 \theta[/tex]

Substitute [tex]1+\tan ^25x\ \text{for} \sec^25x[/tex]

[tex]y'=25(1+\tan^25x)\\y'=25+25\tan^25x\\y'=25+(5\tan5x)^2\\y'=25+y^2[/tex]

Therefore the function y = 5 tan 5x satisfies the differential equation [tex]y'=25+y^2[/tex]

Now , Find the largest interval of the solution

Since the tangent function is periodic with period π so take interval

[tex]-\frac{\pi}{2} <5x<\frac{\pi}{2} \\\\-\frac{\pi}{10} <x<\frac{\pi}{10}[/tex]

since , the function y = 5 tan 5x is not differentiatable  at [tex]x = -\frac{\pi}{10}\ \text {and} \ x=\frac{\pi}{10}[/tex]

Hence the domain of the function y = 5 tan 5x is ,

[tex]\large \boxed {R-\{(2n+1)\frac{\pi}{10},n-1,2,...\} }[/tex]

and largest interval of definition for the solution is [tex]\large \boxed {-\frac{\pi}{10},\frac{\pi}{10} }[/tex]

ACCESS MORE