Answer:
The best prediction for the number of years it will take for the population to reach 200,000 is 9.41
Step-by-step explanation:
Year Population
1 11,920
2 16,800
3 23,300
4 33,000
5 45,750
6 64,000
[tex]y_1 =A _0 e ^{kt _1}\\y_2 = A_0 e^{k t_2}\\(t_1,y_1)=(1,11920)\\(t_2,y_2)=(2,16800)[/tex]
Substitute the values
[tex]11920=A _0 e ^{k} ---1\\16800 = A_0 e^{2k} ---2[/tex]
Divide 1 and 2
[tex]\frac{11920}{16800}=\frac{e^k}{e^{2k}}\\\frac{11920}{16800}=e^{k-2k}\\ln(\frac{11920}{16800})=-k\\k=-1 ln(\frac{11920}{16800})\\k=0.3432\\A_0=y_1 e^{-k t_1}\\A_0=11920 e^{-0.3432}\\A_0=8457.5238[/tex]
The exponential function that passes through the points (1, 11920) and (2, 16800) is[tex]y=8457.5238 e^{0.3432t}[/tex]
Now we are supposed to find the best prediction for the number of years it will take for the population to reach 200,000
[tex]200000=8457.5238 e^{0.3432t}[/tex]
[tex]\frac{200000}{8457.5238}=e^{0.3432t}[/tex]
[tex]ln(\frac{200000}{8457.5238})=0.3432t[/tex]
t = 9.41
Hence the best prediction for the number of years it will take for the population to reach 200,000 is 9.41