Given the data shown below, which of the following is the best prediction for
the number of years it will take for the population to reach 200,000?
Year
Population
11,920
2
16,800
3
23,300
4
33,000
5
45,750
6
64,000
O A. 9.41
O B. 12.45
O C. 15.82
O D. 18.14

Respuesta :

Answer:

The best prediction for  the number of years it will take for the population to reach 200,000 is 9.41

Step-by-step explanation:

Year     Population

1              11,920

2              16,800

3              23,300

4              33,000

5             45,750

6             64,000

[tex]y_1 =A _0 e ^{kt _1}\\y_2 = A_0 e^{k t_2}\\(t_1,y_1)=(1,11920)\\(t_2,y_2)=(2,16800)[/tex]

Substitute the values

[tex]11920=A _0 e ^{k} ---1\\16800 = A_0 e^{2k} ---2[/tex]

Divide 1 and 2

[tex]\frac{11920}{16800}=\frac{e^k}{e^{2k}}\\\frac{11920}{16800}=e^{k-2k}\\ln(\frac{11920}{16800})=-k\\k=-1 ln(\frac{11920}{16800})\\k=0.3432\\A_0=y_1 e^{-k t_1}\\A_0=11920 e^{-0.3432}\\A_0=8457.5238[/tex]

The exponential function that passes through the points (1, 11920) and (2, 16800) is[tex]y=8457.5238 e^{0.3432t}[/tex]

Now we are supposed to find  the best prediction for  the number of years it will take for the population to reach 200,000

[tex]200000=8457.5238 e^{0.3432t}[/tex]

[tex]\frac{200000}{8457.5238}=e^{0.3432t}[/tex]

[tex]ln(\frac{200000}{8457.5238})=0.3432t[/tex]

t = 9.41

Hence the best prediction for  the number of years it will take for the population to reach 200,000 is 9.41