Answer:
Option (D)
Step-by-step explanation:
Vertex form of the parabola will be,
f(x) = a(x - h)² + k
Where (h, k) is the vertex and focus will be [tex](h, k+\frac{1}{4a})[/tex].
Given : Vertex → (3, 1) → (h, k)
Focus → (3, 5) → [tex](h,k+\frac{1}{4a})[/tex]
Therefore, h = 3, k = 1
And, [tex]k+\frac{1}{4a}=5[/tex]
[tex]1+\frac{1}{4a}=5[/tex]
[tex]\frac{1}{4a}=5-1[/tex]
[tex]\frac{1}{4a}=4[/tex]
a = [tex]\frac{1}{16}[/tex]
By substituting these values in the equation, function representing the parabola will be,
f(x) = [tex]\frac{1}{16}(x-3)^2+1[/tex]
Option (D). will be the answer.