Respuesta :

Answer:

Option (D)

Step-by-step explanation:

Vertex form of the parabola will be,

f(x) = a(x - h)² + k

Where (h, k) is the vertex and focus will be [tex](h, k+\frac{1}{4a})[/tex].

Given : Vertex → (3, 1) → (h, k)

            Focus → (3, 5) → [tex](h,k+\frac{1}{4a})[/tex]

Therefore, h = 3, k = 1

And, [tex]k+\frac{1}{4a}=5[/tex]

[tex]1+\frac{1}{4a}=5[/tex]

[tex]\frac{1}{4a}=5-1[/tex]

[tex]\frac{1}{4a}=4[/tex]

a = [tex]\frac{1}{16}[/tex]

By substituting these values in the equation, function representing the parabola will be,

f(x) = [tex]\frac{1}{16}(x-3)^2+1[/tex]

Option (D). will be the answer.

ACCESS MORE