QUESTION THREE
In a horse race, the odds that Romance will win are listed as 2:3 and that Downhill will win are
1:2. What odds should be given for the event that either Romance or Downhill wins? (3 mks)
OUTSTION FOUR​

Respuesta :

Answer:

Odds to be given for an event that either Romance or Downhill wins is 11:4

Explanation:

Given an odd, r = a : b. The probability of the odd, r can be determined by;

     Pr(r) = [tex]\frac{a}{b}[/tex] ÷ (

So that;

Odd that Romance will win = 2:3

Pr(R) = [tex]\frac{2}{3}[/tex] ÷ (

        = [tex]\frac{2}{3}[/tex] ÷ [tex]\frac{5}{3}[/tex]

       = [tex]\frac{2}{5}[/tex]

Odd that Downhill will win = 1:2

Pr(D) = [tex]\frac{1}{2}[/tex] ÷ (

        =  [tex]\frac{1}{2}[/tex] ÷ [tex]\frac{3}{2}[/tex]

        = [tex]\frac{1}{3}[/tex]

The probability that either Romance or Downhill will win is;

Pr(R) + Pr(D) = [tex]\frac{2}{5}[/tex] +  [tex]\frac{1}{3}[/tex]

                    = [tex]\frac{11}{15}[/tex]

The probability that neither Romance nor Downhill will win is;

Pr(neither R nor D) = (1 - [tex]\frac{11}{15}[/tex])

                               = [tex]\frac{4}{15}[/tex]

The odds to be given for an event that either Romance or Downhill wins can be determined by;

                               = Pr(Pr(R) + Pr(D)) ÷ Pr(neither R nor D)

                               = [tex]\frac{11}{15}[/tex] ÷ [tex]\frac{4}{15}[/tex]

                              = [tex]\frac{11}{4}[/tex]

Therefore, odds to be given for an event that either Romance or Downhill wins is 11:4

ACCESS MORE