Which expression represents the volume, in cubic units, of
the composite figure?
pi(5^2)(13)-1/3pi(5^2)(12) pi(5^2)(13)-1/3pi(5^2)(25)
pi(5^2)(13)+1/3pi(5^2)(12)
pi(5^2)(13+1/3pi(5^2)(25)

Which expression represents the volume in cubic units of the composite figure pi521313pi5212 pi521313pi5225 pi521313pi5212 pi521313pi5225 class=

Respuesta :

Answer:

C.

[tex]V = \pi * 5^2(13) +\frac{1}{3}\pi * 5^2 (12)[/tex]

Step-by-step explanation:

Given:

The figure is a combination of a cone and a cylinder

Radius (of both), [tex]r = 5[/tex]

Height of Cylinder, [tex]H_1 = 13[/tex]

Height of Cone, [tex]H_2 = 25 - 13 = 12[/tex]

Required:

Volume  of the figure

Let V represents the volume of the figure;

[tex]V_1[/tex] represents the volume of the cylinder

[tex]V_2[/tex] represents the volume of the cone

So, [tex]V = V_1 + V_2[/tex]

Where [tex]V_1 = \pi r^2H_1[/tex] and [tex]V_2 = \frac{1}{3}\pi r^2 H_2[/tex]

So, V becomes

[tex]V = \pi r^2H_1 + \frac{1}{3}\pi r^2 H_2[/tex]

Factorize the above expression

[tex]V = \pi r^2(H_1 + \frac{1}{3}H_2)[/tex]

Substitute [tex]r = 5[/tex]; [tex]H_1 = 13[/tex];[tex]H_2 = 12[/tex]

[tex]V = \pi * 5^2(13 + \frac{1}{3} * 12)[/tex]

[tex]V = \pi * 5^2(13 + \frac{1}{3} * 12)[/tex]

Open Bracket

[tex]V = \pi * 5^2(13) +\pi * 5^2 \frac{1}{3} (12)[/tex]

Reorder

[tex]V = \pi * 5^2(13) +\frac{1}{3}\pi * 5^2 (12)[/tex]

From the list of options given, option c is correct.

Answer:

C

Step-by-step explanation:

Ver imagen DragonSinSlayer11
ACCESS MORE