Respuesta :
Answer:
Step 1
Work done = -9134.4 J
ΔQ = -9134.4 J
Step 2
ΔQ = -3570.32 J = ΔU
W = 0
Step 3
The pdV work done = 3570.32 J
The Vdp work done = 11053.37 J
Heat transferred, ΔE = 0.
Explanation:
For diatomic gases γ = 1.4
Step 1
Where:
v₂ = 3.00·v₁
On isothermal expansion of an ideal gas by Boyle's law, we have;
p₁·v₁ = p₂·v₂ which gives;
p₁·v₁ = p₂×3·v₁
Dividing both sides by v₁, we have;
p₁= 3·p₂
[tex]p_2 = \dfrac{p_1}{3}[/tex]
Hence, the pressure is reduced by a factor of 3
Work done =
[tex]n\cdot R\cdot T\cdot ln\dfrac{v_{f}}{v_{i}}[/tex]
Where:
n = 1 mole
R = 8.3145 J/(mole·K)
T = 1000 K we have
[tex]1 \times 8.3145 \times 1000 \times ln\left (\dfrac{1}{3} \right ) = -9134.4 J[/tex]
Step 2
The gas undergoes a constant volume decrease in pressure given by Charles law as follows;
[tex]\dfrac{p_2}{p3} = \dfrac{T_1}{T_3}[/tex]
Whereby p₂ > p₃, T₁ will be larger than T₃
W = 0 for constant volume process
ΔQ = m×cv×ΔT = 1 × 3.97 × -900 = -3570.32 J = ΔU
Step 3
For adiabatic compression, we have;
[tex]\dfrac{p_3}{p_1} = \left (\dfrac{V_1}{V_3} \right )^{\gamma } = \left (\dfrac{T_3}{T_1} \right )^{\frac{\gamma }{\gamma -1}}[/tex]
Where:
T₁ = 1000 K
T₃ = 100 K
We have;
[tex]\left (\dfrac{V_1}{3\cdot V_1} \right )^{\gamma } = \left (\dfrac{100}{1000} \right )^{\dfrac{\gamma}{\gamma -1}}[/tex]
[tex]\left (\dfrac{1}{3} \right ) = \left (\dfrac{1}{10} \right )^{\dfrac{1}{\gamma -1}}[/tex]
[tex]log\left (\dfrac{1}{3} \right ) = {\dfrac{1}{\gamma -1}} \times log \left (\dfrac{1}{10} \right )^[/tex]
[tex]\gamma -1 =\dfrac{log \left (\dfrac{1}{10} \right )}{ log\left (\dfrac{1}{3} \right ) } {[/tex]
∴ γ-1 = 2.096
γ = 3.096
The pdV work done =
[tex]m \times c_v \times (T_1 - T_3)[/tex]
m×R/(γ - 1)×(T₁ - T₃) =
3.97×(1000 - 100) = 3570.32 J
The Vdp work done =
[tex]m \times c_p \times (T_1 - T_3)[/tex]
[tex]c_p = k \times c_v = 3.096 \times 3.97 = 12.3 \, J/(mol\cdot K)[/tex]
12.3×(1000 - 100) = 11053.37 J
Heat transferred, ΔE = 0.