Respuesta :

Answer: a = 12, b = 2, c = 11

Step-by-step explanation:

Using exponent rules we can distribute the exponent of 3 to the xyz.

This results in the numerator now being. [tex]x^{5*3}+y^{1*3}+z^{4*3}\\[/tex] This can be simplified to, [tex]x^{15}y^{3}z^{12}\\[/tex].

Now divide the numerator by the denominator subtracting the exponents.

Which equals, [tex]x^{12}y^{2}z^{11}[/tex]

So a = 12

b = 2

and

c = 11

The values of [tex]a, \ b,\ c[/tex] are  [tex]12,\ 2,\ 11[/tex] .

What are exponent ?

Exponent indicates that the base is to be raised to a certain power. So, it is the power of the base.

We have,

[tex]\frac{(x^5yz^4)^3}{x^3yz}=x^ay^bz^c[/tex]

Now simplify the above given equation;

[tex]\frac{(x^5*3y^1*3z^4*3)}{x^3yz}=x^ay^bz^c[/tex]

[tex]\frac{(x^{15}y^3z^{12})}{x^3yz}=x^ay^bz^c[/tex]

Now, Using the exponent rule;

[tex]\frac{a^n}{a^m} = a^{n-m}[/tex]

So,

[tex](x^{15-3}y^{3-1}z^{12-1})=x^ay^bz^c[/tex]

[tex](x^{12}y^{2}z^{11})=x^ay^bz^c[/tex]

Now,

As we see variables on both sides of equation are same (i.e. bases of powers are same), so now compare the powers of sides of variables;

⇒    [tex]x^{12}=x^a[/tex]

       [tex]a=12[/tex],

And, [tex]y^2=y^b[/tex]

         [tex]b=2[/tex]

And, [tex]z^{11}=z^c[/tex]

         [tex]c=11[/tex]

So, the values of [tex]a, \ b,\ c[/tex] are [tex]12,\ 2,\ 11[/tex] which are find out using the  exponent rule.

Hence, we can say that the values of [tex]a, \ b,\ c[/tex] are [tex]12,\ 2,\ 11[/tex] .

To know more about exponent click here

https://brainly.com/question/5497425

#SPJ3

ACCESS MORE