Respuesta :
The expression for the speed of the mass is [tex]v = \sqrt{\frac{gL}{3} }[/tex]
The given parameters;
mass of the string, = m
length of the string, = L
speed of the string, = v
The tension of the string at the top of the circle;
[tex]T_{top} = \frac{mv_t^2}{r} - mg[/tex]
The tension of the string at the bottom of the string;
[tex]T_{bottom} = \frac{mv_b^2}{r} + mg[/tex]
The ratio of the two force is given as;
[tex]\frac{T_{top}}{T_{bottom}} = \frac{mg - \frac{mv_t^2}{r} }{mg + \frac{mv_b^2}{r}} = 0.5\\\\0.5(mg + \frac{mv_b^2}{r}) = mg - \frac{mv_t^2}{r}\\\\mg + \frac{mv_b^2}{r} = 2(mg - \frac{mv_t^2}{r})\\\\mg + \frac{mv_b^2}{r} = 2mg - 2\frac{mv_t^2}{r}\\\\2\frac{mv_t^2}{r} + \frac{mv_b^2}{r} = 2mg - mg\\\\2\frac{mv_t^2}{r} + \frac{mv_b^2}{r} = mg\\\\assuming \ v_t = v_b\\\\3\frac{mv^2}{r}= mg\\\\\frac{v^2}{r} = \frac{g}{3} \\\\v^2 = \frac{rg}{3} \\\\v = \sqrt{\frac{rg}{3}}[/tex]
[tex]v = \sqrt{\frac{gL}{3} }[/tex]
Thus, the expression for the speed of the mass is [tex]v = \sqrt{\frac{gL}{3} }[/tex]
Learn more here: https://brainly.com/question/15589506