Answer:
The x-coordinate of A is:
a = 6.1
Step-by-step explanation:
For point A:
x-coordinate = a
x-coordinate + y-coordinate = 14
y-coordinate = 14 - x-coordinate
y-coordinate = 14 - a
So point A can be written as (a, 14-a)
Let (a,14) be (x₁,y₁)
Point P can be written as (3a, a²+13a-11)
Let P be (x₂,y₂)
Slope of a line passing through 2 point is given as:
[tex]m=\frac{y_2-y_1}{x_2-x_1}[/tex]
where m=7
Substitute all values
[tex]7=\frac{(a^2+13a-11)-(14-a)}{3a-a}\\7=\frac{a^2+13a-a-11-14}{3a-a}\\7=\frac{a^2+12a-25}{2a}\\14a=a^2+12a-25\\a^2-2a-25=0\\a=6.1,a=-4.1[/tex]
As A has only positive coordinates
a = 6.1