Answer:
[tex]P(33<X<35)=P(\frac{33-\mu}{\sigma}<\frac{X-\mu}{\sigma}<\frac{35-\mu}{\sigma})=P(\frac{33-41}{3}<Z<\frac{35-41}{3})=P(-2.67<z<-2)[/tex]
And we can find the probability of interest with this difference
[tex]P(-2.67<z<-2)=P(z<-2)-P(z<-2.67)[/tex]
And if we use the normal standard table or excel we got:
[tex]P(-2.67<z<-2)=P(z<-2)-P(z<-2.67)=0.02275-0.00379=0.01896[/tex]
And if we convert the probability to a % we got 1.896% and rounded to the nearest tenth we got 1.9 %
Step-by-step explanation:
Let X the random variable that represent the times to conmutes to work of a population, and for this case we know the distribution for X is given by:
[tex]X \sim N(41,3)[/tex]
Where [tex]\mu=41[/tex] and [tex]\sigma=3[/tex]
We are interested on this probability
[tex]P(33<X<35)[/tex]
And we can solve the problem using the z score formula given by:
[tex]z=\frac{x-\mu}{\sigma}[/tex]
And using this formula we got:
[tex]P(33<X<35)=P(\frac{33-\mu}{\sigma}<\frac{X-\mu}{\sigma}<\frac{35-\mu}{\sigma})=P(\frac{33-41}{3}<Z<\frac{35-41}{3})=P(-2.67<z<-2)[/tex]
And we can find the probability of interest with this difference
[tex]P(-2.67<z<-2)=P(z<-2)-P(z<-2.67)[/tex]
And if we use the normal standard table or excel we got:
[tex]P(-2.67<z<-2)=P(z<-2)-P(z<-2.67)=0.02275-0.00379=0.01896[/tex]
And if we convert the probability to a % we got 1.896% and rounded to the nearest tenth we got 1.9 %